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ABSTRACT (235 WORDS) 

Background: Beta-amyloid (Aβ) plaques and tau protein tangles in the brain are the defining ‘A’ 

and ‘T’ hallmarks of Alzheimer’s disease (AD), and together with structural atrophy detectable on 

brain magnetic resonance imaging (MRI) scans as one of the neurodegenerative (‘N’) biomarkers 

comprise the “ATN framework” of AD. Current methods to detect Aβ/tau pathology include 

cerebrospinal fluid (CSF; invasive), positron emission tomography (PET; costly and not widely 

available), and blood-based biomarkers (BBBM; promising but mainly still in development).  

Objective: To develop a non-invasive and widely available structural MRI-based framework to 

quantitatively predict the amyloid and tau measurements.  

Methods: With MRI-based hippocampal multivariate morphometry statistics (MMS) features, we 

apply our Patch Analysis-based Surface Correntropy-induced Sparse coding and max-pooling 

(PASCS-MP) method combined with the ridge regression model to individual amyloid/tau 

measure prediction.  

Results: We evaluate our framework on amyloid PET/MRI and tau PET/MRI datasets from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI). Each subject has one pair consisting of a 

PET image and MRI scan, collected at about the same time. Experimental results suggest that 

amyloid/tau measurements predicted with our PASCP-MP representations are closer to the real 

values than the measures derived from other approaches, such as hippocampal surface area, 

volume, and shape morphometry features based on spherical harmonics (SPHARM).  

Conclusion: The MMS-based PASCP-MP is an efficient tool that can bridge hippocampal atrophy 

with amyloid and tau pathology and thus help assess disease burden, progression, and treatment 

effects. 



Keywords: Alzheimer’s Disease, Hippocampal Multivariate Morphometry Statistics (MMS), 

Dictionary and Correntropy-induced Sparse Coding, Tau Deposition, Amyloid Deposition, 

Braak12 tau-SUVR, Braak34 tau-SUVR, Centiloid.  



INTRODUCTION 

Alzheimer’s disease (AD) has a progressive preclinical phase that begins many years before 

the onset of clinical symptoms. Brain biomarkers can be used to detect brain changes at preclinical 

AD stages, which may facilitate early diagnosis and the development of successful treatment 

strategies [1,2]. Amyloid-β (Aβ) plaques and tau tangles are pathological hallmarks of AD that 

lead to neurodegeneration detectable as structural brain atrophy on volumetric magnetic resonance 

imaging (MRI) scans. Brain Aβ and tau pathology can be measured using positron emission 

tomography (PET) with amyloid/tau-specific radiotracers, lumbar puncture to measure these 

proteins in samples of cerebrospinal fluid (CSF) or emerging blood-based biomarkers (BBBM) 

[3–5]. While BBBM may be more affordable alternatives for inferring Aβ/tau burden, they are 

largely still under development. 

According to the A/T/N system, a framework for understanding the biology of AD, the 

presence of unusual levels of Aβ (A in A/T/N) in the brain or cerebrospinal fluid (CSF) indicates 

the presence of Alzheimer's disease, whereas the presence of tau (which typically occurs after 

amyloid positivity) defines AD [2]. These result in neurodegeneration (N in A/T/N), which are 

detectable by brain MRI scans [2,6,7] or other techniques such as fluorodeoxyglucose positron 

emission tomography (FDG-PET). The assessment of Aβ and tau in the preclinical stage of AD 

has become a common research practice to reduce AD clinical trial costs and increase the success 

likelihood of AD therapy [8]. However, assessment of Aβ/tau pathology using CSF or PET scans 

can easily become inefficient due to the degree of their invasiveness, costs, and accessibility [9]. 

Structural MRI (sMRI) is noninvasive, broadly accessible, cost-effective, and widely used as a 

standard-of-care procedure [9–11]. SMRI scans can detect N very early, around the time of Aβ 

initiation and tau appearance  [7,12–14]. Previous research [15–18], including ours [19–22], detect 



AD related brain structure changes in cognitively unimpaired subjects. Prior findings also support 

that Aβ pathology correlates with sMRI-based atrophy measures in multiple brain structures, 

including total cortical and grey matter volumes, hippocampus, nucleus accumbens, thalamus, and 

putamen volumes [9,11,23,24]. Similarly, patterns of tau pathology are mirrored by entorhinal 

thickness, hippocampal and ventricular volumes [25,26]. Thus, there has been significant interest 

in developing neuroimaging methods to pinpoint structural MRI measurements related to the 

deposition of Aβ and tau [9–11,24,27–32]. Across all phases of dementia research, from clinically 

normal to late stages of AD, the MRI-based hippocampus volume has been a primary target area. 

[21,33–35]. Prior work showed that hippocampal atrophy progresses more quickly in cognitively 

normal people with abnormally high Aβ loads. [36,37]. Furthermore, there is a significant 

correlation between subsequent hippocampal atrophy and the brain's tau burden as measured by 

PET tracers [38].  Further refinement with regional hippocampal measures may provide an even 

stronger correlation with Aβ/tau pathology. 

Many hippocampal surface morphometry measures can be constructed from clinically obtained 

MRI scans, such as radial distances (RD, distance between each surface point to its medial center) 

[39], local area differences [40], and spherical harmonic analysis [41]. An intrinsic surface statistic 

called surface tensor-based morphometry (TBM) [42] analyses spatial derivatives of the 

deformation maps that register brains to a standard template and constructs maps of morphological 

tensors. And we recently proposed a multivariate TBM (mTBM) [43] and later further combined 

RD and mTBM into surface multivariate morphometry statistics (MMS) [44], which also show 

excellent performance in AD diagnosis prediction [45–47]. 

In our recent study, we developed a sparse coding approach called Patch Analysis-based 

Surface Correntropy-induced Sparse coding and Max-pooling (PASCS-MP) to predict Aβ 



positivity using hippocampus multivariate morphometry statistics (MMS) [48,49] and the 

measurements for tau deposition [50]. In this work, we further leverage this framework to 

quantitatively predict the measurement for global amyloid-beta (Aβ) burden on Centiloid scale 

[51] and two other measurements for tau deposition, Braak12 and Braak34 [52–55], specifically 

in brain regions with a close connection to the Braak stage. In comparison to the traditional 

hippocampal volume, surface area, and spherical harmonics (SPHARM) based hippocampal shape 

measures, we hypothesize that our MMS-based PASCS-MP may have greater predictive power. 

We set out to test our hypothesis using two datasets, one combining amyloid PET/MRI and the 

other tau PET/MRI, where a PET image and an MRI scan were collected about the same time for 

every individual from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [56]. 

METHODS 

Participants:  

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database ([56], adni.loni.usc.edu). The ADNI was launched in 

2003 as a public-private partnership led by Principal Investigator Michael W. Weiner, MD. The 

primary goal of ADNI has been to test whether serial MRI, PET, other biological markers, and 

clinical and neuropsychological assessments can be combined to measure the progression of MCI 

and early AD. For up-to-date information, see www.adni-info.org. We analyzed two sets of scans 

for the purpose of examining Aβ deposition and tau deposition from a variety of ADNI stages, 

including ADNI 1, ADNI 2, ADNI GO, and ADNI 3. We examined 1,127 pairs of images from 

1109 participants (18 of whom had two pairs from various visiting dates) for the Aβ deposition 

research, comprising 1,127 T1-weighted MRI and 1,127 florbetapir PET images. For the tau 

http://www.adni-info.org/


deposition evaluation, we collected 925 pairs of MRI scans and AV1451 PET images from 688 

subjects (191 of whom had more than one pair from various visiting dates).  

We included the matching Mini-Mental State Exam (MMSE) [57] scores along with each brain 

MRI scan. We use Centiloid measurements [51] for amyloid PET. The AVID pipeline [51] is used 

to process ADNI florbetapir PET data, which are then transformed to the Centiloid scales using 

published conversion equations [51,58]. Similarly, flortaucipir tau-PET data are reprocessed using 

a single pipeline in accordance with [59] so that the standardized uptake value ratio (SUVR) from 

various ADNI research sites can be examined jointly. This study evaluates two regional SUVR for 

tau deposition, which correspond to Braak12 and Braak34 [52–55]. The demographic data from 

the two cohorts that we studied are displayed in Table 1.  

Table 1. Demographic information for the participants we studied from the ADNI  

(Values are mean ± standard deviation, where applicable). 

Cohort Group Sex (M/F) Age MMSE Centiloid 

Aβ (n=1,127) 

AD (n=173) 98/75 75.0±7.8 22.7±2.9 72.0±40.2 

MCI (n=516) 291/225 72.6±7.8 28.0±1.7 42.0±40.7 

CU (n=438) 200/238 74.5±6.5 29.0±1.2 24.4±33.3 

Cohort Group Sex (M/F) Age MMSE 

Braak12 

tau-SUVR 

Braak34 

tau-SUVR 

tau (n=925) 

AD (n=115) 62/53 76.0±8.5 22.0±4.5 2.39±0.60 2.51±0.73 

MCI (n=278) 158/120 74.6±7.9 27.9±2.1 1.82±0.46 1.92±0.46 

CU (n=532) 210/322 73.4±7.1 29.1±1.1 1.58±0.23 1.73±0.21 



 

Figure 1. System pipeline. Panel (1) shows hippocampus segmentation and hippocampal surface 

registration from brain MRI scans. Panel (2) illustrates our surface features and Aβ/tau measurement 

prediction workflow. In subfigure A of the panel (2), surface-based Multivariate Morphometry 

Statistics (MMS) are calculated after fluid registration of surface coordinates across subjects. MMS 

consists of radial distance (scalar) and multivariate tensor-based morphometry. In subfigures B and C, 

we randomly select patches on each hippocampal surface and generate a sparse code for each patch 

with our proposed Patch Analysis-based Surface Correntropy-induced Sparse-coding (PASCS) 

method. In subfigures D and E, we apply the max pooling operation to the learned sparse codes to 

generate a new vector representation. In subfigure F, we train ridge regression models on these 

representations to predict the measurements for Aβ/tau and validate the root mean square errors with 

10-fold cross-validation. 



System Pipeline 

As illustrated in Figure 1. The framework is divided into two parts: (1) The image pre-

processing part where hippocampi are segmented from sMRI and hippocampal surfaces are 

constructed; (2) Our MMS-based PASCS-MP system where Aβ/tau measures are predicted. 

Specifically, we compute MMS for the hippocampus in both hemispheres of the brain using MRI 

data. The MMS are high-fidelity vertex-wise surface morphometry features that use radial distance 

(RD) to encode morphometry along the surface normal direction and multivariate tensor-based 

morphometry (mTBM) to express morphometry along the surface tangent plane. However, the 

high dimensional features are unsuitable for machine learning models, especially when the sample 

size is small. In order to create a low-dimensional representation for each subject, we propose the 

unsupervised feature extraction method PASCS-MP. In the PASCS-MP, we begin by picking 

random MMS feature patches on the hippocampus surface. After that, sparse codes are generated 

for these patches using the correntropy-induced sparse coding model [49] , which lessens the 

negative effects of non-Gaussian noise in the MMS. Finally, a low-dimensional representation for 

each subject is created using the max-pooling method to minimize the dimensionality of these 

sparse codes. We train the ridge regression model with these representations to predict amyloid-

beta and tau measurements. We perform cross-validations to evaluate the trained models and 

compared the predicted results' root mean squared errors (RMSEs). Analysis of variance 

(ANOVA) [60] and Pearson correlation coefficients [61] are further used to demonstrate our 

predicted results are much closer to the real measurements.  

Hippocampus Segmentation and Hippocampal Surface Reconstruction 

For hippocampus segmentation and hippocampal surface reconstruction, we adopt the protocol 

from our prior work [49]. Specifically, we use FIRST (FMRIB’s Integrated Registration and 



Segmentation Tool) [62] to segment the hippocampus substructure. We reconstruct hippocampal 

surfaces with a topology-preserving level set method [63] and the marching cubes algorithm [64], 

followed by our surface smoothing process consists of mesh simplification using progressive 

meshes [65] and mesh refinement by the Loop subdivision surface method [66]. The smoothed 

meshes are accurate approximations of the original surfaces, with a higher signal-to-noise ratio 

(SNR). 

We compute the conformal grid (150×100) on each hippocampus surface using a holomorphic 

1-form basis [43,67] and use surface conformal representation [68,69], i.e., the conformal factor 

and mean curvature on each surface point, for surface registration. They are linearly scaled into 

the range of 0-255 to provide a featured image for the surface. The hippocampal surfaces are then 

registered to a template surface with our surface fluid registration method [69]. For details of our 

inverse-consistent surface fluid registration method, we refer to [69]. 

Surface Multivariate Morphometry Statistics 

With the registered hippocampal surfaces, we compute surface multivariate morphometry 

statistics (MMS) as surface features [49]. The MMS consists of the radial distance (RD) [39,70] 

and the surface metric tensor from multivariate tensor-based morphometry (mTBM) [43]. RD 

denotes the surface differences along surface normal directions and mTBM statistics assess local 

surface deformation along the surface tangent plane and exhibit better signal detection sensitivity 

[43]. MMS is a 4 × 1  vector at each vertex. The surface of the hippocampus in each brain 

hemisphere has 15,000  vertices, so the feature dimensionality for each hippocampus in one 

hemisphere in each subject is 60,000. 



Surface Feature Dimensionality Reduction  

Since the dimensionality of the surface morphometry feature, MMS, is much higher than the 

number of subjects, we have a typical high dimension-small sample problem. In our prior work 

[49], we proposed a surface sparse coding algorithm, Patch Analysis-based Surface Correntropy-

induced Sparse coding and max-pooling (PASCS-MP) and used the learned features together with 

the random forest classifier for the classify the Aβ positivity. In this work, we generalize our work 

and use the learned low-dimensional features together with the ridge regression model to predict 

both Aβ and tau measures. We briefly introduce our surface feature dimension reduction strategy 

in this subsection and describe the pooling and regression methods in the following subsection.    

Our algorithm randomly produces square windows on each surface to provide a set of small 

image patches with varying degrees of overlap, which can be used to extract important surface 

information and lower the dimension before making predictions. A vertex may be encompassed in 

multiple patches since they are allowed to overlap. In subfigure (b) of panel (2) of Figure 1, the 

zoomed-in window displays overlapping regions on chosen patches. To learn relevant features, we 

employ a sparse coding and dictionary learning method with an l1-regularized correntropy loss 

function [71–74] named Correntropy-induced Sparse-coding (CS), which is expected to improve 

the computational efficiency compared to Stochastic Coordinate Coding (SCC) [75]. Outliers may 

be removed with the use of the correntropy loss function [71–74],  the impact of non-Gaussian 

noise on the data will be lessened by using the correntropy measure as a loss function. 

To solve our optimization problem, we employ the stochastic coordinate coding (SCC) 

algorithm's framework [75] because it can significantly lower the computational cost of the sparse 

coding while maintaining a comparable level of performance. To solve it as a convex function at 

each iteration, we update the learned dictionary, 𝐷, and sparse code, 𝑍, alternately. To do this, we 



first fix 𝐷 and update the sparse code 𝑍 using coordinated descent (CD), and then we fix 𝑍 to 

update the dictionary 𝐷 using stochastic gradient descent (SGD). Due to the stochastic nature of 

our optimization process, we only update the sparse code and dictionary with one signal per 

iteration. Utilizing the learning rate offered by a Hessian approximation speeds up convergence 

for updating the dictionary 𝐷 after we update the sparse code. Our earlier work [49] contains a 

detailed description of our feature dimensionality reduction method.  

Pooling and Regression 

After we get the sparse code (the dimension is m) for each patch, the dimensionality of sparse 

codes for each subject is still too large for classification, which is 𝑚 × 1008. Therefore, we apply 

Max-pooling to reduce the feature dimensionality for each subject. Max-pooling [76] is a way of 

taking the most responsive node of a given region of interest and serves as an important layer in 

the convolutional neural network architecture. In this work, we compute the maximum value of a 

particular feature over all sparse codes of a subject and generate a new representation for each 

subject, which is an m-dimensional vector. These summary representations are much lower in 

dimension, compared to using all the extracted surface patch features; this can improve results 

generalizability via less over-fitting. With these dimension-reduced features, we choose the ridge 

regression model with regularization parameter as 0.01 to predict the measurements of Aβ and tau.  

Performance Evaluation Protocol 

Our work adopts the PASCS-MP to extract sparse codes from the high dimensional 

hippocampal surface MMS features to predict Aβ/tau measurements. The patch size, the 

dimensionality of the learned sparse coding, the regularization parameter for the 𝑙1-norm (𝜆), and 

the kernel size (𝜎) in the exponential function all closely relate to PASCS-MP performance. Patch-

based analysis has been widely used for image segmentation and classification [77]. However, the 



number of patches and patch size are usually empirically determined. To examine the performance 

of the final classification accuracy for the different patch sizes, we choose the vertices by randomly 

selecting the same number of square patches of various sizes. The representation for each subject 

has the same number of dimensions (m) as the learned sparse coding. If the dimensionality is too 

low, the model may skip some important data. On the other hand, when the dimensionality is too 

high, the representations will include an excessive amount of redundant data. To determine these 

key parameter values, we assess the prediction accuracy on a different dataset from ADNI with a 

10-fold cross-validation. The following section will provide further information on the dataset and 

potential key parameter candidates.  

We also take the 10-fold cross-validation for Aβ/tau measurement prediction experiments. 

Specifically, we randomly shuffle and split the dataset into ten groups while making sure that the 

scans from the same subjects are in either training or testing groups only. We take one group as 

the test data set and the rest to train a model. The proposed model is then assessed using the test 

data. In this way, we can obtain a predicted value for each sample. The result of each classification 

experiment is then compared to the ground truth, and the accuracy is calculated to show how many 

class labels were properly detected. The key parameters with the lowest root mean squared error 

are selected. 

We conduct head-to-head Aβ/tau deposition prediction performance comparison among 

different approaches. We compare the performances of biomarkers such as MMS, hippocampus 

volume, and surface area measurements. For a fair comparison, we adopt the same regression 

strategy for all four types of biomarkers. Specifically, we train the regressors using the volume of 

the left and right hippocampi (i.e., hippocampi in each brain hemisphere) as two features rather 

than adding them together. The same regression strategy is applied to surface areas from both 



sides. Additionally, we contrast the regression results using PASCS-MP and SPHARM [42,69,78]. 

The average root mean squared errors are reported after evaluating these regressor performances 

ten times using the identical 10-fold cross-validation approach. In addition, we further evaluate the 

predicted tau and Aβ measurements with analysis of variance (ANOVA) [60] and the Pearson 

correlation coefficients [61]. We first perform ANOVA among the three clinical groups, AD, MCI, 

and CU with the real or predicted value with different biomarker. Moreover, Pearson correlation 

coefficients are computed between real Aβ/tau measurements and predicted ones for each 

biomarker. By considering these performance measures, we compare the performance of our 

proposed system integrating MMS, PASCS-MP and ridge regression with the similar regression 

strategies with three other hippocampal biomarkers for predicting individuals’ Aβ and tau 

measurements.  

EXPERIMENTAL RESULTS 

Key Parameter Estimations for the PASCS-MP Method 

The patch size, the dimensionality of the learnt sparse coding, the regularization parameter for 

the 𝑙1-norm (λ) and the kernel size (𝜎) in the exponential function are the four crucial parameters 

that need to be empirically chosen before the PASCS-MP approach can be applied to the MMS. 

Similar to our prior work [49], we use an independent dataset for the parameter optimization. With 

brain sMRI images from 100 ADNI subjects (100 AD patients, 100 MCI, and 100 CN, no 

overlapping with amyloid PET/MRI and tau PET/MRI cohorts), we train ridge regression models 

to predict MMSE rather than predicting amyloid or tau measurements. To find the optimum 

parameter settings, we use the grid search. The average root mean squared errors (RMSE) of the 

MMSE for each parameter setting are compared after ten repetitions of 10-fold cross-validation. 

Only the mean and 95% confidence interval of the RMSE for a portion of the grid search result 



are shown in Figure 2. In each subfigure, we experiment with one key parameter for comparison, 

and the rest of the parameters are the same. For example, in the kernel size experiment, keep the 

patch size, sparse code dimensionality, and regularization parameter are kept constant, the 

experiment is performed by adjusting the kernel size. Finally, we discover that the best patch size 

is 10×10, the best sparse code dimensionality is 1800, the best λ is 0.22, and the best σ is 3.6; these 

best parameters are then used to predict Aβ and tau measurements.  

 

 

Prediction of Aβ/tau Measurements 

After applying PASCS-MP on MMS of all subjects from two cohorts, i.e., 1,127 scans from 

the Aβ cohort and 925 scans from the tau cohort, we obtain new representations, of which the 

dimensionality is 1,800. These representations are utilized for training ridge regression models to 

predict amyloid burden in the Aβ cohort and two tau measurements, Braak12 tau-SUVR and 

Braak34 tau-SUVR in the tau cohort.  

 We also perform the 10-fold cross-validation ten times for each measurement prediction. Figure 

3 shows the mean and 95% confidence interval of the RMSEs for the three measurements. We 

 

Figure 2. The relationship of each parameter to RMSE. The y-axis represents the value for each parameter. The 

red bars represent the classification performances using the optimal parameters. Each bar represents the average 

and 95% confidence interval for RMSE. 



train ridge regression models with hippocampal surface area, hippocampal volume, and the 

hippocampal shape features generated by the well-known shape morphometry features based on 

spherical harmonics (SPHARM) approach [42,69] to show that our representations have greater 

predictive ability. As shown in Figure 3, the orange bar in each subfigure is the RMSEs from our 

proposed framework, PASCS-MP, and the rest three are by using other hippocampal biomarkers. 

The RMSEs to predict Centiloid are 41.05, 41.08, 40.69 and 30.8. for these four biomarkers, 

hippocampal surface area, hippocampal volume, SPHARM and our MMS-based PASCS-MP 

representation. Similarly, the RMSEs to predict Braak12 tau-SUVR are 0.456, 0.455, 0.406 and 

0.367 and the RMSEs to predict Braak34 tau-SUVR are 0.456, 0.455, 0.431 and 0.410 for four 

biomarkers [50]. Our PASCS-MP always has the minimum RMSEs in predicting the Aβ/tau 

measurements. 

 

Figure 3. RMSEs for predicted Braak12 tau-SUVR, Braak34 tau-SUVR and for Centiloid of amyloid from 

four hippocampal biomarkers, hippocampal surface area, volume, SPHARM and our MMS-based PASCS-

MP representations. Each bar represents the mean and 95% confidence interval of RMSE for ten 10-fold cross-

validations. 



 

Analysis of the Predicted Aβ/Tau Measurements 

With the predicted Aβ/tau measurements, we first conduct an analysis of variance (ANOVA) 

among the three clinical groups, AD, MCI, and CU, to assess the clinical relevance of our 

prediction results from various features. The distributions of the predicted measurements are 

shown in Figure 4. The distribution of real Centiloid, Braak12 tau-SUVR, and Braak34 tau-SUVR 

are shown in the first column. Other columns include the predicted results from the hippocampus 

surface area, volume, SPHARM, and our PASCS-MP.  

Each subfigure shows the F-value and p-value of the ANOVA among the three clinical groups. 

The F-values for real Centiloid and predicted Centiloid (with hippocampal surface area, 

hippocampal volume and SPHARM, and our PASCS-MP) are 99.2, 1.0, 1.1, 20.2 and 37.9, 

respectively. Similarly, the F-values for real Braak12 tau-SUVR and predicted Braak12 tau-SUVR 

are 227.8, 0.9, 2.4, 100.1 and 155.0, respectively [50]. The F-values for Braak34 tau-SUVR are 

192.2, 1.2, 2.9, 88.1 and 138.3, respectively [50]. The higher F-values suggest the larger 

differences among the three groups, AD, MCI, and CU. The p-values for the results from 

hippocampal area and volume are not significant but the predicted results from SPHARM and our 

MMS-based PASCS-MP representations are all significant (<0.001). Among all the predicted 

measurements, our PASCS-MP obtains the most significant group difference, which could indicate 

that our predicted results are the closest to the actual ones.   



 

 

Figure 4. ANOVA analysis for real and predicted Aβ/tau measurements. The first column is the distribution of 

real Centiloid, Braak12 tau-SUVR, and Braak34 tau-SUVR measures. The remaining columns are the predicted 

measurements from hippocampal surface area, hippocampal volume, SPHARM, and our MMS-based PASCS-MP 

representations. The F-value and p-value of ANOVA among AD, MCI, and CU groups are illustrated on the top of 

each subfigure. 



Additionally, we use the Pearson correlation to assess the relationships between each of the 

predicted and actual Aβ/tau measurements. We depict the linear relationships in Figure 5. The 

horizontal axis is the predicted measurement, while the vertical axis is the actual measurement. 

Each subfigure also shows the correlation coefficient, R, and p-value for each analysis. The four 

columns show the correlation between each real Aβ/tau measurements and the predicted 

measurements from the four hippocampal biomarkers: hippocampal surface area, hippocampal 

volume, SPHARM and our MMS-base PASCS-MP representations. The R-values for the 

correlations between the real Centiloid and predicted Centiloid are 0.02, 0.02, 0.14, and 0.62, 

respectively. Similarly, the R-values for the correlations between the real Braak12 tau-SUVR and 

the four predicted Braak12 tau-SUVR are 0.05, 0.02, 0.49, and 0.58, respectively [50]. The R-

values for Braak34 tau-SUVR are 0.01, 0.04, 0.34, and 0.43, respectively [50]. The p-values are 

not significant for all the results of area and volume but all very significant for SPHARM and 

PASCS-MP (<0.001). 

In these experiments, our PASCS-MP consistently outperforms the conventional 

measurements in terms of correlation coefficients, indicating that the measurements predicted by 

our MMS-based PASCS-MP representations are reasonably similar to the actual data. With regard 

to predicting Aβ/tau measurements, both studies show that our MMS-based PASCS-MP 

representations are the most accurate among the several methods we examined.  



 

 

DISCUSSION 

PASCS-MP, our unique surface feature dimension reduction approach, is used in this study to 

correlate the hippocampus MMS with Aβ and tau deposition measurements. We develop a 

hippocampal structure based Aβ/tau deposition prediction system that involves hippocampal MMS 

 

Figure 5. Pearson correlation between real Aβ/tau measurement and predicted measurement. The first row 

shows the Pearson correlation between real Centiloid and predicted Centiloid measurements from hippocampal 

surface area, hippocampal volume, SPHARM, and our MMS-based PASCS-MP representations. The second row 

shows the Pearson correlation between real Braak12 tau-SUVR and predicted Braak12 tau-SUVR.  The third row 

shows for the Pearson correlation between real Braak34 tau-SUVR and predicted Braak34 tau-SUVR. The y-axis is 

the real measurement and x-axis shows the predicted measurement. The Pearson correlation coefficient, R, and p-

values are in the top left corner of each subfigure. 



computing, sparse coding, and regression modules. We apply the proposed approach to two 

datasets from ADNI, one is for Aβ and the other for tau deposition. We have two main findings. 

Firstly, the hippocampal surface-based MMS measure effectively encodes a large amount of 

neighboring intrinsic geometric information that would otherwise be inaccessible or disregarded 

in traditional hippocampal volume and surface area measures. Experimental results show that the 

MMS measure provides smaller root mean squared errors in Centiloid, Braak12 tau-SUVR and 

Braak34 tau-SUVR prediction, than hippocampal surface area, volume, and SPHARM for 

detecting the relationships between hippocampal deformations and Aβ/tau accumulation in the 

brain. Secondly, when working with a regression model, our novel sparse coding method, PASCS-

MP, may produce excellent regression results. Our current work generalizes our prior results 

[49,50] and enrich our surface-based brain pathology imputation toolbox. 

The hippocampus is a prominent target region for studying early Alzheimer's disease 

progression. Its structure can be assessed using the commonly used overall hippocampus volume, 

surface area, and our suggested hippocampal MMS. All the hippocampal structure used in this 

work are segmented by FIRST (FMRIB’s Integrated Registration and Segmentation Tool) [47]. 

And all these morphometry features, Surface Area, Volume, SPHARM, and Hippocampal MMS, 

are calculated based on the segmented hippocampal structures. Since our goal is to compare 

performance of different biomarkers, we adopt the same regression model for all biomarkers. 

Prior AD research has extensively examined SPHARM-based hippocampus shape features 

[79–81]. In such an approach, we model the morphologies of the hippocampus segmented by FSL 

using a series of spherical harmonics. SPHARM-PDM (Spherical Harmonics-Point Distribution 

Model) software, created by the University of North Carolina and the National Alliance for 

Medical Imaging Computing, is used to calculate the SPHARM coefficients. [82]. Based on these 



SPHARM coefficients, which are represented by two sets of three-dimensional SPHARM 

coefficients for each subject, the classification features are determined (in fact, one set for the 

hippocampus in each brain hemisphere). Since the subject groups are substantially smaller (fewer 

than 30 subjects in each group) in [79], they apply a feature selection phase. The classifier can be 

more sensitive to non-informative features when fewer subjects exist. Because the current study 

has many subjects, a feature selection phase is unnecessary and may raise the risk of overfitting. 

We follow the same methodology as Cuingnet et al. [80], who opted to skip this selection step. 

According to our previous research [21,34,44], hippocampal MMS exhibits solid performance 

in discriminating clinical groups at various levels of AD risk. In contrast to the hippocampal 

volume measure, hippocampal MMS can identify the effects of the APOE4 gene dosage on the 

hippocampus during the preclinical stage [21]. Our earlier research [48,49] reveals that 

hippocampus MMS provides state-of-the-art results in identifying subjects with various Amyloid 

positivity and outperforms conventional hippocampal area, volume, and measurements. In this 

work, we further demonstrate our proposed framework can also have the best performance in 

predicting the measurements of Aβ and tau. 

Identifying a target group with a high frequency of Aβ/tau pathology may be aided by 

developing advanced computational models for identifying Aβ/tau pathology based on less 

intrusive, affordable, and accessible techniques. Specifically, emerging blood-based biomarkers 

(BBBM) [3–5] for AD brain pathology detection may lead to broader screening and enable early 

intervention [83,84]. Biomarker research supported by the Alzheimer’s Drug Discovery 

Foundation’s Diagnostic Accelerator led to an important milestone in 2020 when C2N diagnostic 

introduced the first commercially available biomarker blood test detecting brain amyloid plaque 

[85]. Recent work on plasma Aβ42 and Aβ40 assays shows strong diagnostic performance in 



distinguishing brain amyloid-positive from amyloid-negative individuals [86,87]. However, there 

is a gap in the accuracy of current tests being sufficient for a prescreening tool that would identify 

potential participants for clinical trials [87]. In our recent pilot study [88], an integrated approach, 

i.e., sMRI feature and BBBM, achieved improved performance in brain amyloidosis prediction 

compared to sMRI and BBBM alone. Since both sMRI and BBBM are readily available in clinics, 

we hypothesize an integration approach may provide a better and more affordable solution for 

brain pathology analysis. 

Despite the promising results of applying our proposed framework, there are three caveats. 

First, although our work beat some other features, the current results still have much room to be 

improved before its clinical implementation. Our ongoing work on geometric deep learning [89–

91] with enlarged training/testing datasets may help further improve the results. Even so, the 

current results support the notion that there is a strong correlation between brain pathology and 

brain structural changes measured by brain MRI scans. Second, in most cases, we cannot visualize 

the selected features using the PASCS-MP approach to refine MMS. This reduces the effect's 

interpretability to some extent, although statistically significant regions can still be shown, similar 

to our earlier group difference research [69,92]. However, in our recent work [93], we use group 

lasso screening to choose the most significant features first, and then randomly select patches to 

form the initial dictionary. As a result, the surface map can be used to show the features employed 

in sparse coding. We will eventually incorporate this idea into the PASCS-MP framework to make 

it easier to understand. Finally, hippocampal morphometry features, MMS, are the only parameters 

used in this study. In the future, in our proposed framework, we intend to include more AD risk 

factors (such as demographic data, genetic data, and clinical assessments) [11,23,24], as well as 



more AD regions of interest (ROIs, such as ventricles, entorhinal cortex, and temporal lobes) 

[22,94,95]. These extra features are expected to increase prediction accuracy. 

CONCLUSION 

In this paper, we predict beta-amyloid and tau burden measurements using hippocampal 

surface multivariate morphometry statistics and sparse coding. Our MMS-based representations 

improved by PASCS-MP better predict Aβ and tau deposition measurements than the conventional 

hippocampal shape measurements. In comparison with predictions made using other features, such 

as hippocampal surface area, hippocampal volume, and SPHARM, the resulting prediction had 

reduced root mean squared errors. For the provided methodology, the correlation between the 

estimated Aβ/tau accumulation values and the actual values is also better. The results of an 

ANOVA test reveal that the predicted values for the various patient groups differ significantly. 

Therefore, the MMS-based PASCP-MP can enrich our understanding of how AD pathology and 

hippocampus atrophy are related, which will help us determine the severity of the disease, its 

progress, and the effects of treatment. In the future, we will explore more AD-related regions of 

interest (ROIs) using this framework to improve the framework's capability to display the features 

of the disease on the surface. 
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